科目: 来源: 题型:
【题目】已知函数f(x)=x2+2bx,g(x)=|x﹣1|,若对任意x1 , x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量的平均数和众数;
(Ⅱ)将表示为的函数;
(Ⅲ)根据频率分布直方图估计利润不少于1350元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )
A.20
B.25
C.30
D.35
查看答案和解析>>
科目: 来源: 题型:
【题目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三个数a,b,c,均存在以 f(a),f(b),f(c)为三边的三角形,则m的取值范围为( )
A.(0,1)
B.[0, )
C.(0, ]
D.[ , ]
查看答案和解析>>
科目: 来源: 题型:
【题目】袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得10分,摸出黑球,得5分,则3次摸球所得总分至少是25分的概率是___.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD, ;
(1)求证:平面PAB平面PCD;
(2)若过点B的直线垂直平面PCD,求证: //平面PAD.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数在点处的切线方程为, (其中为常数).
(1)求函数的解析式;
(2)若对任意,不等式恒成立,求实数的取值范围;
(3)当时,求证: (其中e为自然对数的底数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com