科目: 来源: 题型:
【题目】有人发现,多看电视容易使人变冷漠,如表是一个调查机构对此现象的调查结果:
冷漠 | 不冷漠 | 总计 | |
多看电视 | 68 | 42 | 110 |
少看电视 | 20 | 38 | 58 |
总计 | 88 | 80 | 168 |
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |
K2=
≈11.377,下列说法正确的是( )
A.大约有99.9%的把握认为“多看电视与人变冷漠”有关系
B.大约有99.9%的把握认为“多看电视与人变冷漠”没有关系
C.某人爱看电视,则他变冷漠的可能性为99.9%
D.爱看电视的人中大约有99.9%会变冷漠
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=x2+2ax﹣a﹣1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)﹣m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量 | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:
,
称为相应于点
的残差(也叫随机误差));
租用单车数量 | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 | |||
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求证:对任意x∈R,都有f(x)>0.
(3)若f(x)在R上为增函数,解不等式f(3﹣2x)>4.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln
],满足a﹣ex+1+x<0成立,求实数a的取值范围.
(2)当x≥0时,f(x)≥(t﹣1)x恒成立,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】若椭圆C1:
的离心率等于
,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(﹣1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2 , 当l1⊥l2时,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设椭圆
:
的离心率为
,
分别为椭圆
的左、右顶点,
为右焦点,直线
与
的交点到
轴的距离为
,过点
作
轴的垂线
,
为
上异于点
的一点,以
为直径作圆
.
![]()
(1)求
的方程;
(2)若直线
与
的另一个交点为
,证明:直线
与圆
相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={x|
≤(
)x﹣1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com