相关习题
 0  257825  257833  257839  257843  257849  257851  257855  257861  257863  257869  257875  257879  257881  257885  257891  257893  257899  257903  257905  257909  257911  257915  257917  257919  257920  257921  257923  257924  257925  257927  257929  257933  257935  257939  257941  257945  257951  257953  257959  257963  257965  257969  257975  257981  257983  257989  257993  257995  258001  258005  258011  258019  266669 

科目: 来源: 题型:

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】由大于0的自然数构成的等差数列{an},它的最大项为26,其所有项的和为70;
(1)求数列{an}的项数n;
(2)求此数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,ABC是三个观察站,AB的正东,两地相距6km,CB的北偏西30°,两地相距4km,在某一时刻,A观察站发现某种信号,并知道该信号的传播速度为1km/s,4s后BC两个观察站同时发现这种信号,在以过AB两点的直线为x轴,以AB的垂直平分线为y轴建立的平面直角坐标系中,指出发出这种信号的P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,若在区间上的最小值为,求的取值范围;

2)若对任意 ,且恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

在区间上的极小值和极大值点。

上的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200名学生,得到如下2×2列联表:

喜欢数学课

不喜欢数学课

合计

30

60

90

20

90

110

合计

50

150

200

经计算K2≈6.06,根据独立性检验的基本思想,约有(填百分数)的把握认为“性别与喜欢数学课之间有关系”.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=( +a)x,a∈R
(1)求函数的定义域
(2)是否存在实数a,使得f(x)为偶函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】分类变量X和Y的列联表如下:

y1

y2

总计

x1

a

b

a+b

x2

c

d

c+d

总计

a+c

b+d

a+b+c+d

则下列说法中正确的是(
A.ad-bc越小,说明X与Y关系越弱
B.ad-bc越大,说明X与Y关系越强
C.(ad-bc)2越大,说明X与Y关系越强
D.(ad-bc)2越接近于0,说明X与Y关系越强

查看答案和解析>>

科目: 来源: 题型:

【题目】某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列表述中正确的是( )
A.有95℅的把握认为“这种血清能起到预防感冒的作用”
B.若有人未使用该血清,那么他一年中有95℅的可能性得感冒
C.这种血清预防感冒的有效率为95℅
D.这种血清预防感冒的有效率为5℅

查看答案和解析>>

同步练习册答案