科目: 来源: 题型:
【题目】在四棱锥P﹣ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分别为PB,PC中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求
的值;若不存在,请说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
如图,已知四棱锥
,底面
为菱形,
,
,
平面
,
分别是
的中点。
(1)证明:
;
(2)若
为
上的动点,
与平面
所成最大角
的正切值为
,求二面角
的余弦值。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(2)求函数f(x)的单调区间;
(3)若函数
在[1,2]上是减函数,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校举行环保知识竞赛,为了了解本次竞赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为正数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:
(Ⅰ)求a、b的值;
(Ⅱ)若从成绩较好的第3、4、5组中,按分层抽样的方法抽取6人参加社区志愿者活动,并从中选出2人做负责人,求2人中至少有1人是第四组的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60] | 5 | 0.05 |
第2组 | [60,70] | a | 0.35 |
第3组 | [70,80] | 30 | b |
第4组 | [80,90] | 20 | 0.20 |
第5组 | [90,100] | 10 | 0.10 |
合计 | 100 | 1.00 | |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2+(b﹣8)x﹣a﹣ab,当x∈(﹣3,2)时,f(x)>0,当x∈(﹣∞,﹣3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集为R,求c的取值范围;
(3)当x>﹣1时,求y=
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b=
,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面积为
,求sinA+sinC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com