相关习题
 0  258009  258017  258023  258027  258033  258035  258039  258045  258047  258053  258059  258063  258065  258069  258075  258077  258083  258087  258089  258093  258095  258099  258101  258103  258104  258105  258107  258108  258109  258111  258113  258117  258119  258123  258125  258129  258135  258137  258143  258147  258149  258153  258159  258165  258167  258173  258177  258179  258185  258189  258195  258203  266669 

科目: 来源: 题型:

【题目】若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有(
A.f(0)+f(2)<2f(1)
B.f(0)+f(2)>2f(1)
C.f(0)+f(2)≤2f(1)
D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,射线,与各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合.

1)分别说明是什么曲线,并求出的值;

2)设当时, 的交点分别为,当的交点分别为,求四边形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有 成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示. (Ⅰ)求直方图中x的值;
(Ⅱ)求月平均用电量的众数和中位数;
(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数的解析式;
(2)设 π<x< π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=2sin (2x+ ).
(1)求函数f(x)的最小正周期及其单调减区间;
(2)用“五点法”画出函数g(x)=f(x),x∈[﹣ ]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表达式(不必证明);
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(3)设n∈N+ , 比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并用数学归纳法加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中实数为常数,为自然对数的底数.

(1)当时,求函数的单调区间;

(2)当时,解关于的不等式

(3)当时,如果函数不存在极值点,求的取值范围.

查看答案和解析>>

同步练习册答案