【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数的解析式;
(2)设 π<x< π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.
【答案】
(1)解:由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象,可得A=2,
根据 = = ﹣ ,求得ω=2.
再根据五点法作图可得2× +φ= ,∴φ= ,f(x)=2sin(2x+ ).
(2)解:如图所示,在同一坐标系中画出y=2sin(2x+ )和直线y=m(m∈R)的图象,
由图可知,当﹣2<m<0或 <m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根.
∴m的取值范围为:﹣2<m<0或 <m<2;
当﹣2<m<0时,两根和为 ; 当 <m<2时,两根和为 .
【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)在同一坐标系中画出y=2sin(2x+ )和直线y=m(m∈R)的图象,结合正弦函数的图象的特征,数形结合求得实数m的取值范围和这两个根的和.
科目:高中数学 来源: 题型:
【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:
参考数据: .参考公式:
如果由资料知y对x呈线性相关关系.试求:
(1) (2)线性回归方程
(3)估计使用10年时,维修费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的前n项和为Sn , 已知对任意的n∈N+ , 点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(1)求r的值.
(2)当b=2时,记bn=2(log2an+1)(n∈N+),证明:对任意的n∈N+,不等式成立 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中实数为常数,为自然对数的底数.
(1)当时,求函数的单调区间;
(2)当时,解关于的不等式;
(3)当时,如果函数不存在极值点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )??
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com