科目: 来源: 题型:
【题目】如图,O为坐标原点,椭圆C1:
+
=1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2:
﹣
=1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2=
,且|F2F4|=
﹣1. ![]()
(1)求C1、C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2﹣
x+c(a,c∈R)满足条件:①f(1)=0;②对一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在实数m,使函数g(x)=f(x)﹣mx在区间[m,m+2]上有最小值﹣5,求出实数m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC,
,
E,F分别是A1C1,BC的中点.
(Ⅰ)求证:C1F∥平面ABE;
(Ⅱ)求三棱锥E-ABC的体积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E:
的左、右焦点分别为F1、F2 , 离心率
,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.
(1)求椭圆E的方程;
(2)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆
内,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(1)求C的方程;并求其准线方程;
(2)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于
?若存在,求直线L的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:,K2=![]()
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x+5;函数g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)=
,且g[f(x)]≥k对x∈[﹣1,1]恒成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,曲线
由上半椭圆
:
(
,
)和部分抛物线
:
(
)连接而成,
与
的公共点为
,
,其中
的离心率为
.
![]()
(1)求
,
的值;
(2)过点
的直线
与
,
分别交于点
,
(均异于点
,
),是否存在直线
,使得以
为直径的圆恰好过
点,若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
:
(
为参数),在以
原点为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)过点
且与直线
平行的直线
交
于
,
两点,求点
到
,
两点的距离之积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com