相关习题
 0  258101  258109  258115  258119  258125  258127  258131  258137  258139  258145  258151  258155  258157  258161  258167  258169  258175  258179  258181  258185  258187  258191  258193  258195  258196  258197  258199  258200  258201  258203  258205  258209  258211  258215  258217  258221  258227  258229  258235  258239  258241  258245  258251  258257  258259  258265  258269  258271  258277  258281  258287  258295  266669 

科目: 来源: 题型:

【题目】如图,O为坐标原点,椭圆C1 + =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2 =1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax2 x+c(a,c∈R)满足条件:①f(1)=0;②对一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在实数m,使函数g(x)=f(x)﹣mx在区间[m,m+2]上有最小值﹣5,求出实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,ABBC

EF分别是A1C1BC的中点.

(Ⅰ)求证:C1F∥平面ABE

(Ⅱ)求三棱锥E-ABC的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E: 的左、右焦点分别为F1、F2 , 离心率 ,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.
(1)求椭圆E的方程;
(2)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆 内,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(1)求C的方程;并求其准线方程;
(2)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于 ?若存在,求直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x+5;函数g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k对x∈[﹣1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱柱的所有棱长均为2,平面平面 的中点.

(1)证明:

(2)若是棱的中点,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,曲线由上半椭圆 )和部分抛物线 )连接而成, 的公共点为 ,其中的离心率为

(1)求 的值;

(2)过点的直线 分别交于点 (均异于点 ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知曲线 为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 两点的距离之积.

查看答案和解析>>

同步练习册答案