【题目】如图,曲线由上半椭圆: (, )和部分抛物线: ()连接而成, 与的公共点为, ,其中的离心率为.
(1)求, 的值;
(2)过点的直线与, 分别交于点, (均异于点, ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1), ;(2).
【解析】试题分析:(1)在, 的方程中,令,可得,且, 是上半椭圆的左、右顶点,设半焦距为,由及,联立解得;(2)由(1)知,上半椭圆的方程为,由题意知,直线与轴不重合也不垂直,设其方程为(),代入的方程,整理得: ,设点的坐标为,由根公式,得点的坐标为,
同理,得点的坐标为.由 ,即可得出的值,从而求得直线方程.
试题解析(1)在, 的方程中,令,可得,且, 是上半椭圆的左、右顶点,设半焦距为,由及可得
设半焦距为,由及可得,∴, .
(2)由(1)知,上半椭圆的方程为,
易知,直线与轴不重合也不垂直,设其方程为(),
代入的方程,整理得: (*)
设点的坐标为,∵直线过点,∴点的坐标为,
同理,由得点的坐标为.
依题意可知,∴, .
∵,∴,即,
∵,∴,解得,
经检验, 符合题意,故直线的方程为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(x+1).
(1)将函数f(x)的图象上的所有点向右平行移动1个单位得到函数g(x)的图象,写出函数g(x)的表达式;
(2)若关于x的函数y=g2(x)﹣mg(x2)+3在[1,4]上的最小值为2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个关于圆锥曲线的命题中:
①双曲线 与椭圆 有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A,B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若 则动点P的轨迹为椭圆.其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2 , 求m的值,;
(2)若l1∥l2 , 且它们的距离为 ,求m、n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 … = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的左、右焦点分别为F1、F2 , 离心率 ,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.
(1)求椭圆E的方程;
(2)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆 内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)求曲线C的直角坐标方程;
(2)若曲线C1: (α为参数)与曲线C所表示的图形都相切,求r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinx+1. (Ⅰ)设ω为大于0的常数,若f(ωx)在区间 上单调递增,求实数ω的取值范围;
(Ⅱ)设集合 ,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com