相关习题
 0  258272  258280  258286  258290  258296  258298  258302  258308  258310  258316  258322  258326  258328  258332  258338  258340  258346  258350  258352  258356  258358  258362  258364  258366  258367  258368  258370  258371  258372  258374  258376  258380  258382  258386  258388  258392  258398  258400  258406  258410  258412  258416  258422  258428  258430  258436  258440  258442  258448  258452  258458  258466  266669 

科目: 来源: 题型:

【题目】甲、乙、丙三人投篮的水平都比较稳定,若三人各自独立地进行一次投篮测试,则甲投中而乙不投中的概率为 ,乙投中而丙不投中的概率为 ,甲、丙两人都投中的概率为
(1)分别求甲、乙、丙三人各自投篮一次投中的概率;
(2)若丙连续投篮5次,求恰有2次投中的概率;
(3)若丙连续投篮3次,每次投篮,投中得2分,未投中得0分,在3次投篮中,若有2次连续投中,而另外1次未投中,则额外加1分;若3次全投中,则额外加3分,记ξ为丙连续投篮3次后的总得分,求ξ的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种放射性元素的原子数N随时间t的变化规律是N=N0e﹣λt , 其中e=2.71828…为自然对数的底数,N0 , λ是正的常数
(Ⅰ)当N0=e3 , λ= , t=4时,求lnN的值
(Ⅱ)把t表示原子数N的函数;并求当N= , λ=时,t的值(结果保留整数)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 的展开式各项系数和为M, 的展开式各项系数和为N,(x+1)n的展开式各项的系数和为P,且M+N﹣P=2016,试求 的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数 , 定义使f(1)f(2)f(3)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,2013]内这样的企盼数共有 个.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数.如[﹣2]=﹣2,[﹣1.5]=﹣2,[2.5]=2.求[log2]+[log2]+[log2]+[log21]+[log22]+[log23]+[log24]的值为(  )
A.-1
B.-2
C.0
D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知{ an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(1)求数列{ an}的通项公式;
(2)若数列{bn}满足 +…+ =an (n∈N* 求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:

【题目】某青年教师有一专项课题是进行“学生数学成绩与物理成绩的关系”的研究,他调查了某中学高二年级800名学生上学期期末考试的数学和物理成绩,把成绩按优秀和不优秀分类得到的结果是:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有60人. 附:

P(K2≥k0

0.100

0.050

0.010

k0

6.635

7.879

10.828

K2=
(1)能否在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取4名学生的成绩,记抽取的4份成绩中数学、物理两科成绩恰有一科优秀的份数为X,求X的分布列和期望E(X).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等比数列{an}满足 ,n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn , 若不等式Sn>kan﹣2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】设p:实数x满足x2+4ax+3a2<0,其中a≠0,命题q:实数x满足
(1)若a=﹣1,且p∨q为真,求实数x的取值范围;
(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案