相关习题
 0  258275  258283  258289  258293  258299  258301  258305  258311  258313  258319  258325  258329  258331  258335  258341  258343  258349  258353  258355  258359  258361  258365  258367  258369  258370  258371  258373  258374  258375  258377  258379  258383  258385  258389  258391  258395  258401  258403  258409  258413  258415  258419  258425  258431  258433  258439  258443  258445  258451  258455  258461  258469  266669 

科目: 来源: 题型:

【题目】如图1所示,在边长为24的正方形中,点在边上,且 分别交于点分别交于点将该正方形沿折叠,使得重合,构成如图2所示的三棱柱.

(1)求证: 平面

(2)求多面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C的方程为(x﹣1)2+(y﹣2)2=4. (Ⅰ)求过点M(3,1)的圆C的切线方程;
(Ⅱ)判断直线ax﹣y+3=0与圆C的位置关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b,i的值分别为8,10,0,则输出的a和i和值分别为(
A.2,5
B.2,4
C.0,4
D.0,5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知棱长为1的正方体ABCD﹣A1B1C1D1中,E,F分别是棱B1C1 , C1D1的中点. (Ⅰ)求AD1与EF所成角的大小;
(Ⅱ)求AF与平面BEB1所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】圆心在y轴上,半径为1,且过点(1,2)的圆的方程为(
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 . (Ⅰ)求f(x)的解析式;
(Ⅱ)当 ,求f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足 = (0<λ<1)时,平面DEF⊥平面PCE,则λ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线C1 =1(a>b>0)的左、右焦点分别为F1 , F2 , 点M在双曲线C1的一条渐近线上,且OM⊥MF2 , 若△OMF2的面积为16,且双曲线C1与双曲线C2 =1的离心率相同,则双曲线C1的实轴长为(
A.32
B.16
C.8
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

﹣5

0


(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为( ,0),求θ的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数y=acosx+b的最大值为1,最小值为﹣3,试确定 的递增区间.

查看答案和解析>>

同步练习册答案