科目: 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=
,b2﹣a2=
c2 .
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】经过双曲线
﹣
=1(a>0,b>0)的右焦点F作该双曲线一条渐近线的垂线与两条渐近线相交于M,N两点,若|MN|=
,则该双曲线的离心率是( )
A.2或 ![]()
B.
或 ![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元. (Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|=
,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为
,若存在,求出c的范围,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a. ![]()
(1)求证:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]. ![]()
(1)求图中的实数a的值,并估计该高三学生这次成绩在120分以上的人数;
(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com