科目: 来源: 题型:
【题目】设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r= ;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4 , 内切球的半径为r,四面体P﹣ABC的体积为V,则r= .
查看答案和解析>>
科目: 来源: 题型:
【题目】设D是函数y=f(x)定义域内的一个子区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“开心点”,也称f(x)在区间D上存在开心点.若函数f(x)=ax2﹣2x﹣2a﹣ 在区间[﹣3,﹣ ]上存在开心点,则实数a的取值范围是( )
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(n)=1+ + +…+ (n∈N*),计算得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,由此推算:当n≥2时,有( )
A.f(2n)> (n∈N*)
B.f(2n)> (n∈N*)
C.f(2n)> (n∈N*)
D.f(2n)> (n∈N*)
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)= +lg(x﹣1)+(x﹣3)0 的定义域为( )
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ex+ax﹣1(e为自然对数的底数). (Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2﹣x)=f(x﹣1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在[﹣1,1]上的奇函数f(x)满足当0<x≤1时,f(x)= ,
(1)求f(x)在[﹣1,1]上的解析式;
(2)判断并证明f(x)在[﹣1,0)上的单调性;
(3)当x∈(0,1]时,方程 ﹣2x﹣m=0有解,试求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x的单调递增区间及极值.
(3)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[0,3]上有最大值5和最小值1.设f(x)= .
(1)求a,b的值;
(2)若不等式f(x)﹣k≥0在x∈[1,4]上恒成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com