相关习题
 0  258665  258673  258679  258683  258689  258691  258695  258701  258703  258709  258715  258719  258721  258725  258731  258733  258739  258743  258745  258749  258751  258755  258757  258759  258760  258761  258763  258764  258765  258767  258769  258773  258775  258779  258781  258785  258791  258793  258799  258803  258805  258809  258815  258821  258823  258829  258833  258835  258841  258845  258851  258859  266669 

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , |F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△APF1的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的离心率为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,平面平面 则四棱锥的外接球的表面积为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域为,当时, ,且对任意正实数,满足.

(1)求

(2)证明在定义域上是减函数;

(3)如果,求满足不等式的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的数据得线性回归方程为 = x+ ,其中 =6.5,由此预测当广告费为7百万元时,销售额为万元.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)ax (a1)

(1)判断函数f(x)(1,+∞)上的单调性,并证明你的判断;

(2)a3,求方程f(x)0的正根(精确到0.1)

查看答案和解析>>

科目: 来源: 题型:

【题目】设等差数列{an}满足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则(
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为(
A.8
B.4
C.2
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】若圆的方程为 (θ为参数),直线的方程为 (t为参数),则直线与圆的位置关系是(
A.相交过圆心
B.相交而不过圆心
C.相切
D.相离

查看答案和解析>>

同步练习册答案