科目: 来源: 题型:
【题目】已知函数f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值为2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设直线l的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求
+
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,甲、乙是边长为
的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积).
![]()
(1)将你的裁剪方法用虚线标示在图中,并作简要说明;
(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=cos(
+x)cos(
-x),g(x)=
sin 2x-
.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】如下图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (0 <φ < π)
![]()
(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
cos(2x-
),x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求函数f(x)在区间[-
,
]上的最小值和最大值,并求出取得最值时x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:
很喜爱 | 喜爱 | 一般 | 不喜爱 |
2435 | 4567 | 3926 | 1072 |
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?
查看答案和解析>>
科目: 来源: 题型:
【题目】在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com