科目: 来源: 题型:
【题目】空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器﹣﹣﹣雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.
(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.
(1)求证:EF∥平面PAD;
(2)求EF与平面PDB所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面积为4,b=4,求△ABC的周长
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正四棱锥P﹣ABCD中,AB=2,PA= ,E是棱PC的中点,过AE作平面分别与棱PB、PD交于M、N两点.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直线PA与平面AMEN所成角的正弦值的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}满足a1+a2=10,a5=a3+4.
(1)求{an}的通项公式;
(2)记{an}的前n项和为Sn若Sk+1<2ak+a2,求正整数k的值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n,都有3an=2Sn+3成立.
(1)求数列{an}的通项公式;
(2)设bn=log3an , 求数列{ }的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax3+3x2+1,若至少存在两个实数m,使得f(﹣m),f(1)、f(m+2)成等差数列,则过坐标原点作曲线y=f(x)的切线可以作( )
A.3条
B.2条
C.1条
D.0条
查看答案和解析>>
科目: 来源: 题型:
【题目】设y=f(t)是某港口水的深度y(米)关于时间t(小时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
经长期观察,函数y=f(t)的图象可以近似地看成函数的图象.⑴求的解析式;⑵设水深不小于米时,轮船才能进出港口。某轮船在一昼夜内要进港口靠岸办事,然后再出港。问该轮船最多能在港口停靠多长时间?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com