科目: 来源: 题型:
【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数),现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是直线
(
)上一动点,
、
是圆
:
的两条切线,
、
为切点,
为圆心,若四边形
面积的最小值是
,则
的值是( )
A.
B.
C.
D. ![]()
【答案】D
【解析】∵圆的方程为:
,
∴圆心C(0,1),半径r=1.
根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小。切线长为4,
∴
,
∴圆心到直线l的距离为
.
∵直线
(
),
∴
,解得
,由![]()
所求直线的斜率为![]()
故选D.
【题型】单选题
【结束】
19
【题目】抛物线
的焦点为
,准线为
,经过
且斜率为
的直线与抛物线在
轴上方的部分相交于点
,
,垂足为
,则
的面积是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】若圆
(
)上仅有
个点到直线
的距离为
,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】圆心到直线
距离为
,所以要有
个点到直线
的距离为
,需
,选B.
点睛:与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.
【题型】单选题
【结束】
15
【题目】设
和
为双曲线
的两个焦点,若
,
,
是正三角形的三个顶点,则双曲线的渐近线方程是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
,直线
过抛物线焦点,且与抛物线交于
,
两点,以线段
为直径的圆与抛物线准线的位置关系是( )
A. 相离 B. 相交 C. 相切 D. 不确定
查看答案和解析>>
科目: 来源: 题型:
【题目】在棱长为1的正方体
中,点
,
分别是侧面
与底面
的中心,则下列命题中错误的个数为( )
①
平面
; ②异面直线
与
所成角为
;
③
与平面
垂直; ④
.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】对于①,∵DF
,DF
平面
,
平面
,∴
平面
,正确;
对于②,∵DF
,∴异面直线
与
所成角即异面直线
与
所成角,△
为等边三角形,故异面直线
与
所成角为
,正确;
对于③,∵
⊥
,
⊥CD,且
CD=D,∴
⊥平面
,即
⊥平面
正确;
对于④,
,正确,
故选:A
【题型】单选题
【结束】
8
【题目】已知函数
在区间
上单调递增,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,且
,设命题p:函数
在
上单调递减;命题q:函数
在
上为增函数,
(1)若“p且q”为真,求实数c的取值范围
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱
中,
底面
,
,
,
,
是棱
上一点.
![]()
(I)求证:
.
(II)若
,
分别是
,
的中点,求证:
平面
.
(III)若二面角
的大小为
,求线段
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com