科目: 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)
(1)分别写出两种产品的一年收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 | 低谷时间段用电价格表 | ||
高峰月用 电量(单 位:千瓦时) | 高峰电价 (单位:元/ 千瓦时) | 低谷月用 电量(单位: 千瓦时) | 低谷电价 (单位:元/ 千瓦时) |
50及以下 的部分 | 0.568 | 50及以下 的部分 | 0.288 |
超过 50 至 200 的部分 | 0.598 | 超过 50 至 200 的部分 | 0.318 |
超过200 的部分 | 0.668 | 超过 200 的部分 | 0.388 |
若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=
是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求数列{an}的通项an;
(2)若bn=
,求数列{bn}的前n项和Tn;
(3)设ck=
,{ck}的前n项和为An , 是否存在最小正整数m,使得不等式An<m对任意正整数n恒成立?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)若f(﹣1)=﹣3,求a
(2)若f(x)的定义域为R,求a的取值范围;
(3)是否存在实数a,使f(x)在(﹣∞,2)上为增函数?若存在,求出a的范围?若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
附表及公式
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=
.
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.
查看答案和解析>>
科目: 来源: 题型:
【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )
A.[
,+∞)
B.[
,+∞)
C.[
,+∞)
D.[
,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】有一种大型商品,A,B两地都有出售,且价格相同,某地居民从两地之一购得商品后,运回的费用是:每单位距离A地的运费是B地运费的3倍.已知A,B两地相距10 km,顾客选A或B地购买这件商品的标准是:包括运费和价格的总费用较低.求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com