科目: 来源: 题型:
【题目】在直角坐标系xoy中,曲线C1的参数方程为 ,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=4 .
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a∈R,函数f(x)=log.
(1)当a=1时,解不等式f(x)>1;
(2)若关于x的方程g(x)=f(x)﹣log3(ax+1)有且只有一个零点,求a的取值范围;
(3)设0<a<1,若对任意t,函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.
(1)求证:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx+a.
(1)若函数y=f(x)在x=e处的切线方程为y=2x,求实数a的值;
(2)设m>0,当x∈[m,2m]时,求f(x)的最小值;
(3)求证: .
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆E: + =1(a>b>0)的焦点到直线x﹣3y=0的距离为 ,离心率为 ,抛物线G:y2=2px(p>0)的焦点与椭圆E的焦点重合;斜率为k的直线l过G的焦点与E交于A,B,与G交于C,D.
(1)求椭圆E及抛物线G的方程;
(2)是否存在学常数λ,使 为常数,若存在,求λ的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,BC=2,半圆O以BC为直径,平面ABCD垂直于半圆O所在的平面,P为半圆周上任意一点(与B、C不重合).
(1)求证:平面PAC⊥平面PAB;
(2)若P为半圆周中点,求此时二面角P﹣AC﹣D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】《城市规划管理意见》中提出“新建住宅原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院逐步打开”,此消息在网上一石激起千层浪.各种说法不一而足,为了了解居民对“开放小区”认同与否,从[25,55]岁人群中随机抽取了n人进行问卷调查,得如下数据:
组数 | 分组 | 认同人数 | 认同人数占 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(1)完成所给频率分布直方图,并求n,a,p.
(2)若从[40,45),[45,50)两个年龄段中的“认同”人群中,按分层抽样的方法抽9人参与座谈会,然后从这9人中选2名作为组长,组长年龄在[40,45)内的人数记为ξ,求随机变量ξ的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lg,
(1)求f(x)的定义域并判断它的奇偶性.
(2)判断f(x)的单调性并用定义证明.
(3)解关于x的不等式f(x)+f(2x2﹣1)<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com