精英家教网 > 高中数学 > 题目详情

【题目】椭圆E: + =1(a>b>0)的焦点到直线x﹣3y=0的距离为 ,离心率为 ,抛物线G:y2=2px(p>0)的焦点与椭圆E的焦点重合;斜率为k的直线l过G的焦点与E交于A,B,与G交于C,D.
(1)求椭圆E及抛物线G的方程;
(2)是否存在学常数λ,使 为常数,若存在,求λ的值,若不存在,说明理由.

【答案】
(1)解:设E、G的公共焦点为F(c,0),由题意得

联立解得

所以椭圆E: ,抛物线G:y2=8x.


(2)解:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).

直线l的方程为y=k(x﹣2),与椭圆E的方程联立 ,得(1+5k2)x2﹣20k2x+20k2﹣5=0

△=400k4﹣20(5k2+1)(4k2﹣1)=20(k2+1)>0.

=

直线l的方程为y=k(x﹣2),

与抛物线G的方程联立 ,得k2x2﹣(4k2+8)x+4k2=0.

=

要使 为常数,则20+ =4,得

故存在 ,使 为常数.


【解析】(1)由点到直线的距离公式列式求出c的值,结合土偶眼离心率求出a的值,再由抛物线G:y2=2px(p>0)的焦点与椭圆E的焦点重合即可求得椭圆方程和抛物线方程;(2)依次射出A,B,C,D四点的坐标,设出直线l的方程,联立直线方程和圆锥曲线方程,利用根与系数关系分别写出A,B两点横坐标的和与积,写出C,D两点横坐标的和与积,利用弦长公式求出AB和CD的长度,代入 后可求出使 为常数的λ的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k值为(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,2]上的最大值为8,最小值为m.若函数g(x)=(3﹣10m) 是单调增函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3200元时,可全部租出。当每辆车的月租金每增加50元时(租金增减为50元的整数倍),未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)设租金为(3200+50x)元/辆(xN),用x表示租赁公司的月收益y(单位:元)。

(3)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1的参数方程为 ,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=4
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1) 求实数的值;

(2) 判断并用定义证明该函数在定义域上的单调性;

(3) 若方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合的一个等浓二分划(即.记集合中所有数的积为,集合中所有数的积为的等浓二分划的特征数.证明:

(1)集合的等浓二分划的特征数一定为合数;

(2)若等浓二分划的特征数不为2的倍数则该特征数为的倍数.

有限集合的元素个数简记为.

查看答案和解析>>

同步练习册答案