科目: 来源: 题型:
【题目】已知函数f(x)的图象在[a,b]上连续不断,定义:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值。若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”。
(1)若f(x)=sinx,x∈[
,
],请直接写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=(x-1)2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】太原五中是一所有着百年历史的名校,图1是某一阶段来我校参观学习的外校人数统计茎叶图,第1次到第14次参观学习人数依次记为A1 , A2 , …,A14 , 图2是统计茎叶图中人数在一定范围内的一个算法流程图,那么算法流程图输出的结果是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆
上一点
到点
的距离的最大值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
为抛物线
:
上一动点,过点
作抛物线
的切线交椭圆
于
两点,求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,过点
的直线
的参数方程为
(
为参数,
为
的倾斜角).以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系.曲线
,曲线
.
(1)若直线与
有且仅有一个公共点,求直线
的极坐标方程;
(2)若直线
与曲线
交于不同两点
,与
交于不同两点
,这四点从左到右依次为
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知函数f(x)=sinx+
cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=
对称,则θ的最小值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在多面体
中,
与
均为边长为2的正方形,
为等腰直角三角形,
,且平面
平面
,平面
平面
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足
。
(1)求证:A,B,C三点共线;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0,
],函数f(x)=
(2m+
)|
|+m2的最小值为5,求实数m的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com