科目: 来源: 题型:
【题目】函数
的最大值为3,其图象相邻两条对称轴之间的距离为
.
![]()
(Ⅰ)求函数
的解析式和当
时
的单调减区间;
(Ⅱ)
的图象向右平行移动
个长度单位,再向下平移1个长度单位,得到
的图象,用“五点法”作出
在
内的大致图象.
查看答案和解析>>
科目: 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.
年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本
万元,每生产
(百辆),需另投入成本
万元,且
.由市场调研知,每辆车售价
万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润
(万元)关于年产量
(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个盒子中装有4个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从盒子中不放回随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从盒子中随机取一个球,该球的编号为
,将球放回盒子中,然后再从盒子中随机取一个球,该球的编号为
,求
的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知
的方程为
,平面内两定点
、
.当
的半径取最小值时:
(1)求出此时
的值,并写出
的标准方程;
(2)在
轴上是否存在异于点
的另外一个点
,使得对于
上任意一点
,总有
为定值?若存在,求出点
的坐标,若不存在,请说明你的理由;
(3)在第(2)问的条件下,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
平面
,
.
![]()
(1)证明:平面
平面
;
(2)在
上是否存在一点
,使平面
将几何体
分成上下两部分的体积比为
?若存在,求出点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=3sinx+2cosx+1.若实数a,b,c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则
的值为( )
A.﹣1
B.![]()
C.1
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:若m﹣
<x
(m∈Z),则m叫做离实数x最近的整数,记作{x},即m={x},关于函数f(x)=x﹣{x}的四个命题:①定义域为R,值域为(﹣
,
]; ②点(k,0)是函数f(x)图象的对称中心(k∈Z);③函数f(x)的最小正周期为1; ④函数f(x)在(﹣
,
]上是增函数.上述命题中,真命题的序号是
查看答案和解析>>
科目: 来源: 题型:
【题目】将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 弧AC 长为
,弧A1B1 长为
,其中B1与C在平面AA1O1O的同侧. ![]()
(1)求圆柱的体积与侧面积;
(2)求异面直线O1B1与OC所成的角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资
万元建起了一座绿色农产品加工厂.经营中,第一年支出
万元,以后每年的支出比上一年增加了
万元,从第一年起每年农场品销售收入为
万元(前
年的纯利润综合=前
年的 总收入-前
年的总支出-投资额
万元).
(1)该厂从第几年开始盈利?
(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.
【答案】(1) 从第
开始盈利(2) 该厂第
年年平均纯利润达到最大,年平均纯利润最大值为
万元
【解析】试题分析:(1)根据公式得到
,令函数值大于0解得参数范围;(2)根据公式得到
,由均值不等式得到函数最值.
解析:
由题意可知前
年的纯利润总和
(1)由
,即
,解得
由
知,从第
开始盈利.
(2)年平均纯利润
因为
,即
所以
当且仅当
,即
时等号成立.
年平均纯利润最大值为
万元,
故该厂第
年年平均纯利润达到最大,年平均纯利润最大值为
万元.
【题型】解答题
【结束】
21
【题目】已知数列
的前
项和为
,并且满足
,
.
(1)求数列
通项公式;
(2)设
为数列
的前
项和,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com