科目: 来源: 题型:
【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为
(m),三块种植植物的矩形区域的总面积为
(m2).
![]()
(1)求
关于
的函数关系式;
(2)求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列关于用斜二测画法画直观图的说法中,错误的是( )
A. 用斜二测画法画出的直观图是在平行投影下画出的空间图形
B. 几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同
C. 水平放置的矩形的直观图是平行四边形
D. 水平放置的圆的直观图是椭圆
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知四棱锥P-ABCD,
底面
,且底面ABCD是边长为2的正方形,M、N分别为PB、PC的中点.
![]()
(1)证明:MN//平面PAD;
(2)若PA与平面ABCD所成的角为
,求四棱锥P-ABCD的体积V.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={x||x+1|<1},B={x|(
)x﹣2≥0},则A∩RB=( )
A.(﹣2,﹣1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.![]()
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】求满足下列条件的直线的方程:
(1)直线
经过点
,并且它的倾斜角等于直线
的倾斜角的2倍,求直线
的方程;
(2)直线
过点
,并且在
轴上的截距是
轴上截距的
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥
中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
,点
在线段
上,且
.
![]()
(
)求证:
.
(
)求证:
平面
.
(
)设平面
平面
,试问:直线
是否与直线
平行,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列{an}的各项均为正数,a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn .
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+
+
+…+
+
,参照教材上推导等比数列前n项和公式的推导方法,求证:{
Tn﹣
﹣6n}是一个常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com