相关习题
 0  259273  259281  259287  259291  259297  259299  259303  259309  259311  259317  259323  259327  259329  259333  259339  259341  259347  259351  259353  259357  259359  259363  259365  259367  259368  259369  259371  259372  259373  259375  259377  259381  259383  259387  259389  259393  259399  259401  259407  259411  259413  259417  259423  259429  259431  259437  259441  259443  259449  259453  259459  259467  266669 

科目: 来源: 题型:

【题目】某企业员工500人参加学雷锋志愿活动,按年龄分组:第1[25,30),第2[30,35),第3[35,40),第4[40,45),第5[45,50],得到的频率分布直方图如图所示.

(1)上表是年龄的频数分布表,求正整数的值;

(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?

(3)(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知与曲线相切的直线,与轴, 轴交于两点, 为原点, ,( .

1)求证: 相切的条件是: .

2)求线段中点的轨迹方程;

3)求三角形面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设x,y满足不等式组 ,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为(
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]

查看答案和解析>>

科目: 来源: 题型:

【题目】比较下列各组数的大小:

(1)log0.7 1.3log0.71.8;

(2)log35log64;

(3)(lgn)1.7(lgn)2 (n>1).

查看答案和解析>>

科目: 来源: 题型:

【题目】某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图。

(一)人数统计表: (二)各年龄段人数频率分布直方图:

(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出的值;

(Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动。若将这个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率。

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)

100位居民月均用水量的频率分布表

组号

分组

频数

频率

1

4

0.04

2

0.08

3

15

4

22

5

6

14

0.14

7

6

8

4

0.04

9

0.02

合 计

100

(1)确定表中的值

(2)求频率分布直方图中左数第4个矩形的高度;

(3)在频率分布直方图中画出频率分布折线图;

(4)我们想得到总体密度曲线,请回答我们应该怎么做?

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC所在的平面内,点P0、P满足 = ,且对于任意实数λ,恒有 ,则(
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC

查看答案和解析>>

科目: 来源: 题型:

【题目】有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各个学校做问卷调查。某中学A,B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分分别为;5, 8, 9, 9, 9:B班5名学生的得分分别为;6, 7, 8, 9, 10。

(1)请你分析A,B两个班中哪个班的问卷得分要稳定些;

(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率。

查看答案和解析>>

同步练习册答案