科目: 来源: 题型:
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1 , A1D1的中点,点P,Q分别在棱DD1 , BB1上移动,且DP=BQ=λ(0<λ<2) ![]()
(1)当λ=1时,证明:直线BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某家具厂有方木料90
,五合板600
,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1
,五合板2
,生产每个书橱需要方木料0.2
,五合板1
,出售一张书桌可获利润80元,出售一个书橱可获利润120元.请问怎样安排生产可使所得利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙、丙
人投篮,投进的概率分别是
,
,
.
(1)现
人各投篮
次,求
人至少一人投进的概率;
(2)用
表示乙投篮
次的进球数,求随机变量
的概率分布及数学期望
和方差
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本
万元,生产与销售均已百台计数,且每生产
台,还需增加可变成本
万元,若市场对该产品的年需求量为
台,每生产
百台的实际销售收入近似满足函数
.
(
)试写出第一年的销售利润
(万元)关于年产量
(单位:百台,
,
)的函数关系式:(说明:销售利润=实际销售收入-成本)
(
)因技术等原因,第一年的年生产量不能超过
台,若第一年的年支出费用
(万元)与年产量
(百台)的关系满足
,问年产量
为多少百台时,工厂所得纯利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
![]()
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间
,
,
,
,
进行分组,得到频率分布条形图如图.
![]()
(1)求图中
的值;
(2)空气质量状况分别为轻微污染或轻度污染定为空气质量Ⅲ级,求一年中空气质量为Ⅲ级的天数
(3)小张到该城市出差一天,这天空气质量为优良的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是定义在
上的函数,如果存在常数
,对区间
的任意划分:
,和式
恒成立,则称
为
上的“绝对差有界函数”,注:
.
(1)求证:函数
在
上是“绝对差有界函数”;
(2)记集合
存在常数
,对任意的
,有
成立.
求证:集合
中的任意函数
为“绝对差有界函数”;
(3)求证:函数
不是
上的“绝对差有界函数”.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
,其中
,若
、
、
是
的三条边长,则下列结论:①对于一切
都有
;②存在
使
、
、
不能构成一个三角形的三边长;③
为钝角三角形,存在
,使
,其中正确的个数为______个
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,正确的命题的序号为__________.
①已知随机变量服从二项分布
,若
,
,则
;
②将一组数据中的每个数据都加上同一个常数后,方差恒不变;
③设随机变量
服从正态分布
,若
,则
;
④某人在
次射击中,击中目标的次数为
,
,则当
时概率最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com