精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称上的绝对差有界函数,注:.

1)求证:函数上是绝对差有界函数

2)记集合存在常数,对任意的,有成立.

求证:集合中的任意函数绝对差有界函数

3)求证:函数不是上的绝对差有界函数”.

【答案】1)见解析(2)见解析(3)见解析

【解析】

1)将整理为,可知上单调递增;可知,从而可将化简为,从而可知,得到结论;(2)取,根据,可得,从而可取得到结论;(3)取一个划分:,可将整理为;根据放缩可知只要足够大,可使得,从而得到结论.

1

时,

在区间上为单调递增函数

时,有

所以

从而对区间的任意划分:

存在,使得成立

综上,函数上是“绝对差有界函数”

2)证明:任取

从而对区间的任意划分:

和式成立

则可取

所以集合中的任意函数为“绝对差有界函数”

3)取区间的一个划分:

则有:

所以对任意常数,只要足够大,就有区间的一个划分:

满足

所以函数不是的“绝对差有界函数”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数有两个极值点,其中,且,则方程的实根个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数a>0,函数f(x)=ln(1+ax)﹣
(1)讨论f(x)在区间(0,+∞)上的单调性;
(2)若f(x)存在两个极值点x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10﹣ ,t∈[0,24)
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料90 ,五合板600,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 ,五合板2 ,生产每个书橱需要方木料0.2,五合板1 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元.请问怎样安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为圆上任一点.

(1)的最大值与最小值;

2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察如图,则第__行的各数之和等于20172

查看答案和解析>>

同步练习册答案