相关习题
 0  259589  259597  259603  259607  259613  259615  259619  259625  259627  259633  259639  259643  259645  259649  259655  259657  259663  259667  259669  259673  259675  259679  259681  259683  259684  259685  259687  259688  259689  259691  259693  259697  259699  259703  259705  259709  259715  259717  259723  259727  259729  259733  259739  259745  259747  259753  259757  259759  259765  259769  259775  259783  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,抛物线的方程为

(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;

(2)直线的参数方程是为参数),交于两点, ,求的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)圆是以为直径的圆,一直线与之相切,并与椭圆交于不同的两点,当且满足时,求的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.(单位:t100≤≤150)表示下一个销售季度内的市场需求量,T(单位:)表示下一个销售季度内经销该农产品的利润.

)将T表示为的函数;

)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为1,此时四面体外接球的表面积是________________.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

阅读时间

人数

8

10

12

11

7

2

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作成如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的终点值作为代表);

(2)根据已知条件完成下面的列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?

男生

女生

总计

阅读达人

非阅读达人

总计

附:参考公式,其中.

临界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】是两个不共线的非零向量.

1)设,那么当实数t为何值时,ABC三点共线;

2)若的夹角为60°,那么实数x为何值时的值最小?最小值为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线,记.

(1)当时,求原点关于直线的对称点坐标;

(2)在中,求边上中线长的最小值;

(3)求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 ,乙获胜的概率为 ,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论的单调性;

(3)若,求的取值范围.

查看答案和解析>>

同步练习册答案