相关习题
 0  259596  259604  259610  259614  259620  259622  259626  259632  259634  259640  259646  259650  259652  259656  259662  259664  259670  259674  259676  259680  259682  259686  259688  259690  259691  259692  259694  259695  259696  259698  259700  259704  259706  259710  259712  259716  259722  259724  259730  259734  259736  259740  259746  259752  259754  259760  259764  259766  259772  259776  259782  259790  266669 

科目: 来源: 题型:

【题目】已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在平面上,点,点在单位圆上且 .

(1)若点,求的值:

(2)若,四边形的面积用表示,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P(0,﹣1)是椭圆C1 + =1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1 , l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.

(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;

(2)点第一次到达最高点大约要多长时间?

查看答案和解析>>

科目: 来源: 题型:

【题目】设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若 ,求a:b:c.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.

(1)计算这10名学生的成绩的均值和方差;

(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学将100名髙一新生分成水平相同的甲、乙两个平行班”,每班50.陈老师采用AB两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)从乙班随机抽取2名学生的成绩,成绩优秀的个数为,求的分布列和数学期望

(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀与教学方式有关.

甲班A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

查看答案和解析>>

同步练习册答案