相关习题
 0  259618  259626  259632  259636  259642  259644  259648  259654  259656  259662  259668  259672  259674  259678  259684  259686  259692  259696  259698  259702  259704  259708  259710  259712  259713  259714  259716  259717  259718  259720  259722  259726  259728  259732  259734  259738  259744  259746  259752  259756  259758  259762  259768  259774  259776  259782  259786  259788  259794  259798  259804  259812  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求函数的图象在点处的切线方程;

(2)若函数的图象与轴有且仅有一个交点,求实数的值;

(3)在(2)的条件下,对任意的,均有成立,求正实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业一天中不同时刻的用电量(万千瓦时)关于时间(单位:小时,其中对应凌晨0点)的函数近似满足 ,如图是函数的部分图象.

(1)求的解析式;

(2)已知该企业某天前半日能分配到的供电量(万千瓦时)与时间(小时)的关系可用线性函数模型模拟,当供电量小于企业用电量时,企业必须停产.初步预计开始停产的临界时间在中午11点到12点之间,用二分法估算所在的一个区间(区间长度精确到15分钟).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1 , l2之间,l∥l1 , l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧 的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2 , 则函数y=f(x)的图象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】过点( )引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知任意角以坐标原点为顶点,轴的非负半轴为始边,若终边经过点,且,定义:,称“”为“正余弦函数”,对于“正余弦函数”,有同学得到以下性质:

①该函数的值域为; ②该函数的图象关于原点对称;

③该函数的图象关于直线对称; ④该函数为周期函数,且最小正周期为

⑤该函数的递增区间为.

其中正确的是__________.(填上所有正确性质的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如表所示((吨)为买进蔬菜的数量,(天)为销售天数):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)根据上表数据在所给坐标系中绘制散点图,并用最小二乘法求出关于的线性回归方程

(2)根据(Ⅰ)中的计算结果,该蔬菜商店准备一次性买进25吨,预计需要销售多少天?

(参考数据和公式: .)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=(

A.8
B.9
C.10
D.11

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

同步练习册答案