相关习题
 0  259674  259682  259688  259692  259698  259700  259704  259710  259712  259718  259724  259728  259730  259734  259740  259742  259748  259752  259754  259758  259760  259764  259766  259768  259769  259770  259772  259773  259774  259776  259778  259782  259784  259788  259790  259794  259800  259802  259808  259812  259814  259818  259824  259830  259832  259838  259842  259844  259850  259854  259860  259868  266669 

科目: 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的离心率为,焦点到相应准线的距离为分别为椭圆的左顶点和下顶点,为椭圆上位于第一象限内的一点,轴于点轴于点.

(1)求椭圆的标准方程;

(2)若,求的值;

(3)求证:四边形的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合: ①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方体的棱长为1,中点,连接,则异面直线所成角的余弦值为_____

【答案】

【解析】

连接CD1CM,由四边形A1BCD1为平行四边形得A1BCD1,即∠CD1M为异面直线A1BD1M所成角,再由已知求△CD1M的三边长,由余弦定理求解即可.

如图,

连接,由,可得四边形为平行四边形,

,∴为异面直线所成角,

由正方体的棱长为1,中点,

中,由余弦定理可得,

∴异面直线所成角的余弦值为

故答案为:

【点睛】

本题考查异面直线所成角的求法,异面直线所成的角常用方法有:将异面直线平移到同一平面中去,达到立体几何平面化的目的;或者建立坐标系,通过求直线的方向向量得到直线夹角或其补角.

型】填空
束】
16

【题目】中,角所对的边分别是的中点,面积的最大值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,则_____

【答案】

【解析】

分子分母同时除以,把目标式转为的表达式,代入可求.

,则

故答案为:

【点睛】

本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式, 形如等类型可进行弦化切;(2)“1”的灵活代换的关系进行变形、转化.

型】填空
束】
15

【题目】如图,正方体的棱长为1,中点,连接,则异面直线所成角的余弦值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(1,2),过点P(5,﹣2)的直线与抛物线y2=4x相交于B,C两点,则△ABC是(
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定

查看答案和解析>>

科目: 来源: 题型:

【题目】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(
A.101
B.808
C.1212
D.2012

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的分别为a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第3次.某同学在A处的命中率q1为0.25,在B处的命中率为q2 . 该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮的训练结束后所得的总分,其分布列为

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上确定一点E,使得PB∥平面ACE,并求 的值;
(2)在(1)条件下,求平面PAB与平面ACE所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案