相关习题
 0  259676  259684  259690  259694  259700  259702  259706  259712  259714  259720  259726  259730  259732  259736  259742  259744  259750  259754  259756  259760  259762  259766  259768  259770  259771  259772  259774  259775  259776  259778  259780  259784  259786  259790  259792  259796  259802  259804  259810  259814  259816  259820  259826  259832  259834  259840  259844  259846  259852  259856  259862  259870  266669 

科目: 来源: 题型:

【题目】已知曲线C: =1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1 , 四边形ABCD的面积为S2 . (Ⅰ)当点B坐标为(﹣1,0)时,求k的值;
(Ⅱ)若S1= ,求线段AD的长;
(Ⅲ)求 的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘31(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:l可以多次出现),则n的所有不同值的个数为

A. 4 B. 6 C. 8 D. 32

查看答案和解析>>

科目: 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一续保人本年度的保费高于基本保费的概率;

(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;

(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax+a). (I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求三棱锥P﹣BCE的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2+ ,现有一组数据,绘制得到茎叶图,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)求a的值;
(Ⅱ)现从茎叶图小于3的数据中任取2个数据分别替换m的值,求恰有1个数据使得函数f(x)没有零点的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为1,该纸片上的等边三角形的中心为.为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使得重合,得到三棱锥.当的边长变化时,所得三棱锥体积的最大值为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有( )

A. 14个 B. 13个 C. 15个 D. 12个

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

【答案】(1)(2)

【解析】

1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bnn,由裂项相消求和可得答案.

(1)等比数列的前项和为,公比①,

②.

②﹣①,得,则

,所以

因为,所以

所以

所以

(2)

所以前项和

【点睛】

裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如.

型】解答
束】
22

【题目】已知函数的图象上有两点.函数满足,且

(1)求证:

(2)求证:

(3)能否保证中至少有一个为正数?请证明你的结论.

查看答案和解析>>

同步练习册答案