相关习题
 0  259697  259705  259711  259715  259721  259723  259727  259733  259735  259741  259747  259751  259753  259757  259763  259765  259771  259775  259777  259781  259783  259787  259789  259791  259792  259793  259795  259796  259797  259799  259801  259805  259807  259811  259813  259817  259823  259825  259831  259835  259837  259841  259847  259853  259855  259861  259865  259867  259873  259877  259883  259891  266669 

科目: 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:

超过

不超过

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是 .若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在正整数数列中,由1开始按如下规则依次取它的项:第一次取1;第二次取2个连续偶数;第三次取3个连续奇数;第四次取4个连续偶数;第五次取5个连续奇数……按此规律取下去,得到一个子数列……则在这个子数列中,第个数是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:①命题“若,则”的逆否命题为假命题:

②命题“若,则”的否命题是“若,则”;

③若“”为真命题,“”为假命题,则为真命题,为假命题;

④函数有极值的充要条件是 .

其中正确的个数有( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2, ,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面积;
(Ⅱ)若D,E在线段BC上,且BD=DE=EC, ,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)求证:函数在公共定义域内,恒成立;

(3)若存在两个不同的实数,满足,求证:

查看答案和解析>>

同步练习册答案