相关习题
 0  259749  259757  259763  259767  259773  259775  259779  259785  259787  259793  259799  259803  259805  259809  259815  259817  259823  259827  259829  259833  259835  259839  259841  259843  259844  259845  259847  259848  259849  259851  259853  259857  259859  259863  259865  259869  259875  259877  259883  259887  259889  259893  259899  259905  259907  259913  259917  259919  259925  259929  259935  259943  266669 

科目: 来源: 题型:

【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知平面为矩形,分别为的中点,.

(1)求证:平面

(2)求证:面平面

(3)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为.

(1)证明:的面积为定值;

(2)设直线与圆交于两点,若,求圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}的前n项和为
(1)求数列{an}的通项公式an
(2)是否存在正整数n,使得 ?若存在,求出n值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为 ,第二道工序检查合格的概率为 ,已知该厂三个生产小组分别每月负责生产一台这种仪器.
(1)求本月恰有两台仪器完全合格的概率;
(2)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为常数.

(1)若,求函数的极值;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是定义域上的单调递增函数

(1)求证:命题“设,若,则”是真命题

(2)解关于的不等式

查看答案和解析>>

科目: 来源: 题型:

【题目】某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示甲在号车站下车,乙在号车站下车

)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;

)求甲、乙两人同在第3号车站下车的概率;

)求甲、乙两人在不同的车站下车的概率.

查看答案和解析>>

同步练习册答案