科目: 来源: 题型:
【题目】已知函数
.
(1)利用“五点法”画出函数
在一个周期
上的简图;
(2)先把
的图象上所有点向左平移
个单位长度,得到
的图象;然后把
的图
象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到
的图象;再把
的图象
上所有点的纵坐标缩短到原来的
倍(横坐标不变),得到
的图象,求
的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=cos(x+
),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x=
对称
C.f(x+π)的一个零点为x= ![]()
D.f(x)在(
,π)单调递减
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C1:y=cosx,C2:y=sin(2x+
),则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的
倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线C2
查看答案和解析>>
科目: 来源: 题型:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查
结果只有“满意”和“不满意”两种
,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列
的公差
,数列
满足
,集合
.
(1)若
,
,求集合
;
(2)若
,求
使得集合
恰有两个元素;
(3)若集合
恰有三个元素,
,T是不超过5的正整数,求T的所有可能值,并写出与之相应的一个等差数列
的通项公式及集合
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是( )
A.a=2b
B.b=2a
C.A=2B
D.B=2A
查看答案和解析>>
科目: 来源: 题型:
【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代数学名著《九章算术》中“竹九节”问题曰:“今有竹九节,下三节容量四升,上四节容量三升,问中间两节欲均容各多少?”其意为:“现有一根9节的竹子,自上而下的容积成等差数列,下面3节容量为4升,上面4节容积为3升,问中间2节各多少容积?”则中间2节容积合计________升
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com