科目: 来源: 题型:
【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延误天数Y | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示), ![]()
(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.
(1)若学生宿舍建筑为
层楼时,该楼房综合费用为
万元,综合费用是建筑费用与购地费用之和),写出
的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?
【答案】(1)
;(2)学校应把楼层建成
层,此时平均综合费用为每平方米
万元
【解析】
由已知求出第
层楼房每平方米建筑费用为
万元,得到第
层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高
万元
,然后利用等差数列前
项和求建筑
层楼时的综合费用
;
设楼房每平方米的平均综合费用为
,则
,然后利用基本不等式求最值.
解:
由建筑第5层楼房时,每平方米建筑费用为
万元,
且楼房每升高一层,整层楼每平方米建筑费用提高
万元,
可得建筑第1层楼房每平方米建筑费用为:
万元.
建筑第1层楼房建筑费用为:
万元
.
楼房每升高一层,整层楼建筑费用提高:
万元
.
建筑第x层楼时,该楼房综合费用为:
.
;
设该楼房每平方米的平均综合费用为
,
则:
,
当且仅当
,即
时,上式等号成立.
学校应把楼层建成10层,此时平均综合费用为每平方米
万元.
【点睛】
本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.
【题型】解答题
【结束】
20
【题目】已知
.
(1)求函数
的最小正周期和对称轴方程;
(2)若
,求
的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(1)求等差数列{an}的通项公式;
(2)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量
=(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),设函数f(x)=
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
,0)求函数f(x)在区间[0,
]上的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=
与曲线
(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程 (不要求证明);
(2)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,双曲线
=1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
= . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈
.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是( )
A.d≈ ![]()
B.d≈ ![]()
C.d≈ ![]()
D.d≈ ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,则
_____.
【答案】![]()
【解析】
分子分母同时除以
,把目标式转为
的表达式,代入可求.
,则![]()
![]()
故答案为:
.
【点睛】
本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式
, 形如
等类型可进行弦化切;(2)“1”的灵活代换
和
的关系进行变形、转化.
【题型】填空题
【结束】
15
【题目】如图,正方体
的棱长为1,
为
中点,连接
,则异面直线
和
所成角的余弦值为_____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com