相关习题
 0  259961  259969  259975  259979  259985  259987  259991  259997  259999  260005  260011  260015  260017  260021  260027  260029  260035  260039  260041  260045  260047  260051  260053  260055  260056  260057  260059  260060  260061  260063  260065  260069  260071  260075  260077  260081  260087  260089  260095  260099  260101  260105  260111  260117  260119  260125  260129  260131  260137  260141  260147  260155  266669 

科目: 来源: 题型:

【题目】时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4/套时,每日可售出套题21千套.

1)求的值;

2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆C: =1(a>b>0)的离心率为 ,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|= ,又过左焦点F1(﹣c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】

(1)求的单调区间;

(2)求函数上的最值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若,若对任意,存在,使得 成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某圆的极坐标方程为

(1)圆的普通方程和参数方程

(2)圆上所有点的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句.据此可以推知张博源、高家铭和刘雨恒分别研究的是__________.(A莎士比亚、B雨果、C曹雪芹,按顺序填写字母即可.)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C1与圆C2相交于AB两点,

(1)求公共弦AB所在的直线方程;

(2)求圆心在直线上,且经过AB两点的圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,的中点.

求证:平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间(以月为单位)的关系为,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[ ],求a的取值范围.

查看答案和解析>>

同步练习册答案