相关习题
 0  260066  260074  260080  260084  260090  260092  260096  260102  260104  260110  260116  260120  260122  260126  260132  260134  260140  260144  260146  260150  260152  260156  260158  260160  260161  260162  260164  260165  260166  260168  260170  260174  260176  260180  260182  260186  260192  260194  260200  260204  260206  260210  260216  260222  260224  260230  260234  260236  260242  260246  260252  260260  266669 

科目: 来源: 题型:

【题目】已知函数f(x)= +x.
(1)若函数f(x)的图象在(1,f(1))处的切线经过点(0,﹣1),求a的值;
(2)是否存在负整数a,使函数f(x)的极大值为正值?若存在,求出所有负整数a的值;若不存在,请说明理由;
(3)设a>0,求证:函数f(x)既有极大值,又有极小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,证明:对任意的.

查看答案和解析>>

科目: 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回归方程

2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额.

: 回归方程 ,

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知过点的直线的参数方程是为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.

)求直线的普通方程和曲线的直角坐标方程;

)若直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F,过点F的直线交y轴于点N,交椭圆C于点A、P(P在第一象限),过点P作y轴的垂线交椭圆C于另外一点Q.若

(1)设直线PF、QF的斜率分别为k、k',求证: 为定值;
(2)若 且△APQ的面积为 ,求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:

抽取顺序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得=xi=9.97,s==≈0.212,≈18.439,(xi)(i﹣8.5)=﹣2.78,

 其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

 (1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产

 过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地

 变大或变小).

 (2)一天内抽检零件中,如果出现了尺寸在﹣3s,+3s)之外的零件,就认为这条生产线在这一天

 的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

 ①从这一天抽检的结果看,是否需对当天的生产过程进行检查?

 ②在﹣3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的

 均值与标准差.(精确到0.01)

附:样本(xi,yi)(i=1,2,…,n)的相关系数r=≈0.09.

查看答案和解析>>

科目: 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

合计

105

已知在全部105人中随机抽取一人为优秀的概率为.

(1)请完成上面的列联表

(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到1011号的概率.

参考公式和数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某市在海岛A上建了一水产养殖中心.在海岸线l上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人.现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1:2.

(1)求sin∠ABC的大小;
(2)设∠ADB=θ,试确定θ的大小,使得运输总成本最少.

查看答案和解析>>

科目: 来源: 题型:

【题目】以下资料是一位销售经理收集到的每年销售额y(千元)和销售经验x(年)的关系:

销售经验x/年

1

3

4

4

6

8

10

10

11

13

年销售额y/千元

80

97

92

102

103

111

119

123

117

136

(1)依据这些数据画出散点图并作直线=78+4.2x,计算

(2)依据这些数据求回归直线方程并据此计算

(3)比较(1) (2)中的残差平方和的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆M:x2+y2﹣2x+a=0.
(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;
(2)若AB为圆M的任意一条直径,且 =﹣6(其中O为坐标原点),求圆M的半径.

查看答案和解析>>

同步练习册答案