科目: 来源: 题型:
【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为
(t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上. ![]()
(1)若
=
,
=1,求
的值;
(2)若EF2=FAFB,证明:EF∥CD.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex .
(1)当a=2时,求函数f(x)的最值;
(2)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明:
<a<
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
=1(a>b>0)的左、右顶点分别为A,B,焦距为2
,直线x=﹣a与y=b交于点D,且|BD|=3
,过点B作直线l交直线x=﹣a于点M,交椭圆于另一点P. ![]()
(1)求椭圆的方程;
(2)证明:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间(t),结果如下:
类别 | 铁观音 | 龙井 | 金骏眉 | 大红袍 |
顾客数(人) | 20 | 30 | 40 | 10 |
时间t(分钟/人) | 2 | 3 | 4 | 6 |
注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点,
=3
. ![]()
(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂要建造一个长方体的无盖箱子,其容积为48 m3,高为3 m,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为( )
A. 900元 B. 840元
C. 818元 D. 816元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com