科目: 来源: 题型:
【题目】如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(1)证明:G是AB的中点;
(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF= , 则下列结论中错误的个数是( )
(1) AC⊥BE.
(2) 若P为AA1上的一点,则P到平面BEF的距离为.
(3) 三棱锥A-BEF的体积为定值.
(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.
(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 当a=﹣1时,求证:f(x)≤0;
(Ⅱ) 对任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目: 来源: 题型:
【题目】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)设数表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了解开展校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
频数 | 6 | a | 24 | b |
(1)求a,b,c的值;
(2)先用分层抽样的方法从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望E(ξ);
(3)某评估机构以指标(,其中表示的方差)来评估该校开展安全教育活动的成效.若≥0.7,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com