科目: 来源: 题型:
【题目】以直角坐标系中的原点O为极点,x轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=
.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)过极点O作直线l交曲线于点P,Q,若|OP|=3|OQ|,求直线l的极坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面上的三点P(5,2)、F1(-6,0)、F2(6,0).
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,点
,直线
,设圆
的半径为1, 圆心在
上.
![]()
(1)若圆心
也在直线
上,过点
作圆
的切线,求切线方程;
(2)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
若直线l过点A(4,0),且被圆C1截得的弦长为2
, 求直线l的方程
查看答案和解析>>
科目: 来源: 题型:
【题目】一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
. 并指出袋中哪种颜色的球个数最少.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f1(x)=
;f2(x)=(x﹣1)
;f3(x)=loga(x+
),(a>0,a≠1);f4(x)=x(
),(x≠0),下面关于这四个函数奇偶性的判断正确的是( )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
,离心率
,短轴
,抛物线顶点在原点,以坐标轴为对称轴,焦点为
,
(1)求椭圆和抛物线的方程;
(2)设坐标原点为
,
为抛物线上第一象限内的点,
为椭圆是一点,且有
,当线段
的中点在
轴上时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com