科目: 来源: 题型:
【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足
=λ
,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱锥
,侧棱
,底面三角形
为正三角形,边长为
,顶点
在平面
上的射影为
,有
,且
.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)线段
上是否存在点
使得
⊥平面
,如果存在,求
的值;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE=
,在折叠后的线段AD上是否存在一点P,且
,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A﹣CDF的体积的最大值,并求此时二面角E﹣AC﹣F的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A. 袋中有形状、大小、质地完全一样的
个红球和
个白球,从中随机抽出一个球,一定是红球
B. 天气预报“明天降水概率
”,是指明天有
的时间会下雨
C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票
张,一定会中奖
D. 连续掷一枚均匀硬币,若
次都是正面朝上,则第六次仍然可能正面朝上
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为
,赔钱的概率是
;乙股票赚钱的概率为
,赔钱的概率为
.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2
cosC+2=0.
(1)求角C的大小;
(2)若b=
a,△ABC的面积为
sinAsinB,求sinA及c的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数f(x)给出定义:
设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.
某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算
= .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
若函数
有唯一零点,则以下四个命题中正确的是______(填写正确序号)
①.
②.函数
在
处的切线与直线
平行
③.函数
在
上的最大值为![]()
④.函数
在
上单调递减
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com