相关习题
 0  260359  260367  260373  260377  260383  260385  260389  260395  260397  260403  260409  260413  260415  260419  260425  260427  260433  260437  260439  260443  260445  260449  260451  260453  260454  260455  260457  260458  260459  260461  260463  260467  260469  260473  260475  260479  260485  260487  260493  260497  260499  260503  260509  260515  260517  260523  260527  260529  260535  260539  260545  260553  266669 

科目: 来源: 题型:

【题目】如图,已知正方体的棱长为2,则以下四个命题中错误的是

A. 直线为异面直线 B. 平面

C. D. 三棱锥的体积为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知四棱锥PABCD,底面ABCD为菱形,PA平面ABCDABC=60°,E,F分别是BC,PC的中点.

(1)证明:AEPD;

(2)HPD上的动点,EH与平面PAD所成最大角的正切值为,

求二面角EAFC的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(Ⅰ)写出C的普通方程;
(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位员工人参加学雷锋志愿活动,按年龄分组:第,第,,,,得到的频率分布直方图如图所示.

1)下表是年龄的频率分布表,求正整数的值;

区间






人数






2)现在要从年龄较小的第组中用分层抽样的方法抽取人,年龄在第组抽取的员工的人数分别是多少?

3)在(2)的前提下,从这人中随机抽取人参加社区宣传交流活动,求至少有人年龄在第组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某零售店近5个月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;

(2)用最小二乘法计算利润额关于销售额的回归直线方程;

(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).

[参考公式:]

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)证明:平面ACD⊥平面ABC;
(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

查看答案和解析>>

同步练习册答案