科目: 来源: 题型:
【题目】某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为 ,C、D两辆汽车每天出车的概率均为 ,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形,∠CAF=60°.
(1)求证:BC⊥平面ACEF;
(2)求平面ABF与平面ADF所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)= sin2x+sinxcosx﹣ .
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)= ,b+c=4,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)的实义域为R,其图象关于点(﹣1,0)中心对称,其导函数为f′(x),当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0.则不等式xf(x﹣1)>f(0)的解集为( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).
(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的 倍,求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)经过点( ,1),且离心率为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为﹣ ,若动点P满足 ,试探究,是否存在两个定点F1 , F2 , 使得|PF1|+|PF2|为定值?若存在,求F1 , F2的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com