科目: 来源: 题型:
【题目】函数p(x)=lnx+x﹣4,q(x)=axex(a∈R).
(Ⅰ)若a=e,设f(x)=p(x)﹣q(x),试证明f′(x)存在唯一零点x0∈(0,
),并求f(x)的最大值;
(Ⅱ)若关于x的不等式|p(x)|>q(x)的解集中有且只有两个整数,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点E(﹣2,0),点P时圆F:(x﹣2)2+y2=36上任意一点,线段EP的垂直平分线交FP于点M,点M的轨迹记为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过F的直线交曲线C于不同的A、B两点,交y轴于点N,已知
=m
,
=n
,求m+n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如图,其中AF=1,AD=2,∠ADC=
,点N时线段AD的中点. ![]()
(Ⅰ)试问在线段BE上是否存在点M,使得直线AF∥平面MNC?若存在,请证明AF∥平面MNC,并求出
的值,若不存在,请说明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有
是“年轻人”. ![]()
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2=
,n=a+b+c+d)
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a11成等比数列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),则m+n的值是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是
,则三棱锥P﹣ABC的外接球的表面积是( )
A.2π
B.4π
C.8π
D.16π
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
mcos2x+(m﹣2)sinx,其中1≤m≤2,若函数f(x)的最大值记为g(m),则g(m)的最小值为( )
A.﹣ ![]()
B.1
C.3﹣ ![]()
D.
﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com