科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设曲线
与直线
交于
、
两点,且
点的坐标为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
上各点的横坐标都缩短为原来的
倍,纵坐标坐标都伸长为原来的
倍,得到曲线
,在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴非负半轴为极轴)中,直线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)设点
是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
,
为顶点的三角形的周长为
.
(1)求椭圆
的标准方程;
(2)设该椭圆
与
轴的交点为
,
(点
位于点
的上方),直线
与椭圆
相交于不同的两点
,求证:直线
与直线
的交点
在定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据已知条件完成上面的
列联表,并判断能否有
的把握认为关注“一带一路”是否和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式
,其中![]()
临界值表:
| 0.05 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在直三棱柱
中,底面为等腰直角三角形,
,
, 若
、
、
别是棱
、
、
的中点,则下列四个命题:
;
②三棱锥
的外接球的表面积为
;
③三棱锥
的体积为
;
④直线
与平面
所成角为![]()
其中正确的命题有__________.(把所有正确命题的序号填在答题卡上)
查看答案和解析>>
科目: 来源: 题型:
【题目】把2支相同的晨光签字笔,3支相同英雄钢笔全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )
A. 24种 B. 28种 C. 32种 D. 36种
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
上各点的横坐标都缩短为原来的
倍,纵坐标坐标都伸长为原来的
倍,得到曲线
,在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴非负半轴为极轴)中,直线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)设点
是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com