相关习题
 0  260912  260920  260926  260930  260936  260938  260942  260948  260950  260956  260962  260966  260968  260972  260978  260980  260986  260990  260992  260996  260998  261002  261004  261006  261007  261008  261010  261011  261012  261014  261016  261020  261022  261026  261028  261032  261038  261040  261046  261050  261052  261056  261062  261068  261070  261076  261080  261082  261088  261092  261098  261106  266669 

科目: 来源: 题型:

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为

“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表):

(3)经计算,甲基地的500个桔柚直径的样本方差,乙基地的500个桔柚直径的样本方差,,并且可认为优质品率较高的基地采摘的桔柚直径服从正态分布,其中近似为样本平均数近似为样本方差.由优质品率较高的种植基地的抽样数据,估计该基地采摘的桔柚中,直径不低于86.78亳米的桔柚在总体中所占的比例.

附:.

,则.

.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,平面平面的中点.

(1)若,求证:平面:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )

(参考数据:

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的方程是,圆的参数方程是为参数)以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线与圆的极坐标方程;

(2)射线: )与圆的交点为 两点,与直线交于点射线: 与圆交于 两点,与直线交于点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

2)当时,求最大的整数使得时,函数图象上的点都在

所表示的平面区域内(含边界.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆系方程 ( ) 是椭圆的焦点, 是椭圆上一点,且.

(1)求的离心率并求出的方程;

2为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对年龄段的人群随机抽取人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

喜欢微信支付的人数

喜欢微信支付的人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

(1)补全频率分布直方图,并求 的值;

(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取人参加“微信支付日鼓励金活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的人中随机选派人做采访嘉宾,求所选派的人没有第四组人的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知边长为的正方形与菱形所在平面互相垂直, 中点.

(1)求证: 平面

(2)若,求四面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)令 ,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知面垂直于圆柱底面, 为底面直径, 是底面圆周上异于的一点, .求证:

(1)平面平面

(2)求几何体的最大体积.

查看答案和解析>>

同步练习册答案