相关习题
 0  260949  260957  260963  260967  260973  260975  260979  260985  260987  260993  260999  261003  261005  261009  261015  261017  261023  261027  261029  261033  261035  261039  261041  261043  261044  261045  261047  261048  261049  261051  261053  261057  261059  261063  261065  261069  261075  261077  261083  261087  261089  261093  261099  261105  261107  261113  261117  261119  261125  261129  261135  261143  266669 

科目: 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,的中点,.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.

(I)求椭圆的方程;

(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E:=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.

(1)求椭圆E的方程及点T的坐标;

(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P,证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线1(a0b0)的右焦点为F(c,0)

(1)若双曲线的一条渐近线方程为yxc2,求双曲线的方程;

(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017吉林延边州模拟)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.

(1)求动点A的轨迹M的方程;

(2)P为轨迹M上的动点,△PBC的外接圆为☉O1,当点P在轨迹M上运动时,求点O1x轴的距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.

)求k的取值范围;

)设CW上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017安徽蚌埠一模)已知椭圆C:=1(a>b>0)的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2.

(1)求椭圆C的方程;

(2)设圆T:(x-2)2+y2=,过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如下图,在平面直角坐标系xOy中,点A(0,3),直线ly=2x-4.设圆C的半径为1,圆心在l.

(1)若圆心C也在直线yx-1上,过点A作圆C的切线,求切线的方程;

(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的参数方程是为参数).

Ⅰ)将曲线的参数方程化为普通方程;

Ⅱ)求曲线与曲线交点的极坐标

查看答案和解析>>

同步练习册答案