相关习题
 0  261010  261018  261024  261028  261034  261036  261040  261046  261048  261054  261060  261064  261066  261070  261076  261078  261084  261088  261090  261094  261096  261100  261102  261104  261105  261106  261108  261109  261110  261112  261114  261118  261120  261124  261126  261130  261136  261138  261144  261148  261150  261154  261160  261166  261168  261174  261178  261180  261186  261190  261196  261204  266669 

科目: 来源: 题型:

【题目】已知函数是定义在上的偶函数.时, .

(1) 求曲线在点处的切线方程;

(2) 若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,已知底面为平行四边形, ,三角形为锐角三角形,面,设的中点.

求证: (1)

(2) .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)探究函数的单调性;

(Ⅱ)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:

(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?

Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放张超市的购物券,购物券金额以及发放的概率如下:

现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.

参考公式 .

临界值表:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,直三棱柱中, ,点 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正四棱锥的各条棱长都相等,且点分别是的中点.

1求证:

(2)在上是否存在点,使平面平面,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018届辽宁省凌源市高三上学期期末】随着科技的发展,手机成为人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机.为了调查某地区高中生一周内使用手机的频率,某机构随机抽查了该地区100名高中生某一周内使用手机的时间(单位:小时),所取样本数据分组区间为,由此得到如图所示的频率分布直方图.

1)求的值并估计该地区高中生一周使用手机时间的平均值;

2)从使用手机时间在的四组学生中,用分层抽样方法抽取13人,则每组各应抽取多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线l经过点P(2,0),其倾斜角为,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为

Ⅰ)若直线l与曲线C有公共点,求倾斜角的取值范围;

Ⅱ)设M(x,y)为曲线C上任意一点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.

Ⅰ)求椭圆C1的标准方程;

Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的(1),过点C(1,0)的直线l与椭圆C2交于AB两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

同步练习册答案