相关习题
 0  261024  261032  261038  261042  261048  261050  261054  261060  261062  261068  261074  261078  261080  261084  261090  261092  261098  261102  261104  261108  261110  261114  261116  261118  261119  261120  261122  261123  261124  261126  261128  261132  261134  261138  261140  261144  261150  261152  261158  261162  261164  261168  261174  261180  261182  261188  261192  261194  261200  261204  261210  261218  266669 

科目: 来源: 题型:

【题目】已知抛物线上的两个动点 的横坐标线段的中点坐标为直线与线段的垂直平分线相交于点.

1)求点的坐标;

(2)求的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰梯形中, 上底下底为下底的中点,现将该梯形中的三角形沿线段折起,形成四棱锥.

(1)在四棱锥中,求证:

(2)若平面与平面所成二面角的平面角为求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,飞镖的标靶呈圆盘形,圆盘被10等分,按如图所示染色为Ⅰ、Ⅱ、Ⅲ三部分,某人依次将若干支飞镖投向标靶,如果每次投射都是相互独立的.

(1)如果他投向标靶的飞镖恰有2支且都击中标靶,同时每支飞镖击中标靶的任意位置都是等可能的,求“第Ⅰ部分被击中2次或第Ⅱ部分被击中2次”的概率;

(2)如果他投向标靶的飞镖恰有4支,且他投射1支飞镖,击中标靶的概率为表示标靶被击中的次数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥 中, .

(1)证明:顶点在底面的射影在的平分线上;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:

若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,(其中

(1)若,讨论函数的单调性;

(2)若,求证:函数有唯一的零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右顶点与抛物线的焦点重合,椭圆的离心率为,过椭圆的右焦点且垂直于轴的直线截抛物线所得的弦长为.

(1)求椭圆和抛物线的方程;

(2)过点的直线交于两点,点关于轴的对称点为,证明:直线恒过一定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知四棱锥 中,

.

(1)证明:顶点在底面的射影为边的中点;

(2)点上,且,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某课外实习作业小组调查了1000名职场人士,就入职两家公司的意愿做了统计,得到如下数据分布:

(1)请分别计算40岁以上(含40岁)与40岁以下全体中选择甲公司的频率(保留两位小数),根据计算结果,你能初步得出什么结论?

(2)若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合其中 . 表示 中所有不同值的个数.

(Ⅰ)若集合

(Ⅱ)若集合,求证: 的值两两不同并求

(Ⅲ)求的最小值.(用含的代数式表示

查看答案和解析>>

同步练习册答案