相关习题
 0  261033  261041  261047  261051  261057  261059  261063  261069  261071  261077  261083  261087  261089  261093  261099  261101  261107  261111  261113  261117  261119  261123  261125  261127  261128  261129  261131  261132  261133  261135  261137  261141  261143  261147  261149  261153  261159  261161  261167  261171  261173  261177  261183  261189  261191  261197  261201  261203  261209  261213  261219  261227  266669 

科目: 来源: 题型:

【题目】给出下面四个类比结论:

①实数ab,若ab=0,则a=0或b=0;类比复数z1z2,若z1z2=0,则z1=0或z2=0.

②实数ab,若ab=0,则a=0或b=0;类比向量ab,若a·b=0,则a=0或b=0.

③实数ab,有a2b2=0,则ab=0;类比复数z1z2,有zz=0,则z1z2=0.

④实数ab,有a2b2=0,则ab=0;类比向量ab,若a2b2=0,则ab=0.

其中类比结论正确的个数是(  )

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AMCDAB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接ABAC.

(1)在AB边上是否存在点P,使AD∥平面MPC?

(2)当点PAB边的中点时,求点B到平面MPC的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·泰安模拟)如图,在正四棱柱ABCDA1B1C1D1中,EAD的中点,FB1C1的中点.

(1)求证:A1F∥平面ECC1

(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).证明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·安徽名校阶段性测试)如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于CD的点,AE=3,圆O的直径CE=9.

(1)求证:平面ABE⊥平面ADE

(2)求五面体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC.

(1)求证:AD⊥平面BCD

(2)求三棱锥CABD的高.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

同步练习册答案