科目: 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?
![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为
。若每次抽取的结果是相互独立的,求
的平均值和方差.
附:
,其中
.
| 0.05 | 0.01 |
| td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为
,再由乙猜甲刚才想的数字,把乙猜的数字记为
,且
、
.若
,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(Ⅰ)写出曲线
的直角坐标方程和直线
的普通方程;
(Ⅱ)若
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以
为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目: 来源: 题型:
【题目】先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆
经过不同的三点
在第三象限),线段
的中点在直线
上.
![]()
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设点
是椭圆
上的动点(异于点
且直线
分别交直线
于
两点,问
是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直角梯形
中,
,
,
,
、
分别是边
、
上的点,且
,沿
将
折起并连接成如图的多面体
,折后
.
![]()
(Ⅰ)求证:
;
(Ⅱ)若折后直线
与平面
所成角
的正弦值是
,求证:平面
平面
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com